Российская академия наук

Федеральное государственное унитарное предприятие ЭКСПЕРИМЕНТАЛЬНЫЙ ЗАВОД НАУЧНОГО ПРИБОРОСТРОЕНИЯ со Специальным конструкторским бюро

МОДУЛЬ-НОСИТЕЛЬ VME 6U 98100/ 98100A

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА	3
1.1 Назначение изделия	3
1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:	5
1.3 Состав изделия	5
1.4 Устройство и работа	6
1.4.1 Конструкция	6
1.4.2 Назначение контактов разъемов	7
1.4.3 Базовый адрес и модификатор адреса	8
1.4.4 Принцип действия модуля	10
1.4.5 Адресация субмодулей и вспомогательных устройств модуля-носителя	11
ПРИЛОЖЕНИЕ А Сигналы VME-шины, используемые модулем	15
ПРИЛОЖЕНИЕ Б Перечень плат-мезонинов	16
ПРИЛОЖЕНИЕ В Субмодули	18
В.1 Список субмодулей	18
В.2 Описания субмодулей	19
В.2.1 Субмодуль і16	19
В.2.2 Субмодуль о16	20
В.2.3 Субмодуль io16	21
В.2.4 Субмодуль А4D8	22
ПРИПОЖЕНИЕ Г Конфигурационные ЕРВОМ	23

Настоящий документ предназначен для изучения принципа действия, устройства и работы модуля-носителя 98100/ 98100A (в дальнейшем – модуль-носитель).

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

- 1.1.1 Модуль-носитель 98100/ 98100А предназначен для сопряжения с шиной VME различных устройств, изготовленных в виде плат-мезонинов. Платы-мезонины могут выполнять разнообразные функции, такие, как дискретный ввод-вывод, аналоговый ввод-вывод, измерение частоты, генерация сигналов заданной формы, синхронное детектирование и другие. Устройства, реализованные на платах-мезонинах, могут иметь параллельный, последовательный или параллельно-последовательный интерфейсы.
- 1.1.2 Гибкость, обеспечиваемая модулем-носителем, достигается благодаря «системе на кристалле», выполненной на микросхеме программируемой логики (ПЛИС). Микросхема ПЛИС содержит интерфейс VME и внутреннюю шину, к которой подключаются субмодули, обеспечивающие сопряжение различных плат-мезонинов с интерфейсом VME. Состав субмодулей определяется содержанием микросхемы конфигурационного EPROM. Микросхема EPROM устанавливается в «панельку» на модуле-носителе; она выбирается исходя из требуемого состава плат-мезонинов, размещаемых на модуле-носителе.
- 1.1.3 Модули-носители 98100/ 98100А рассчитаны на установку до восьми плат-мезонинов.
- 1.1.4 Модули-носители выпускаются двух модификаций, отличающихся типом применяемой микросхемы программируемой логики, и, как следствие, допускают различную степень сложности системы (таблица 1).

Таблица 1

Модификация	Тип ПЛИС	Число логических элементов		
98100 (КУНИ.467239.002)	Altera FLEX10K20	20 000		
98100A (КУНИ.467239.002-01)	Altera FLEX10K30	30 000		

- 1.1.5 Модуль-носитель является модулем открытого типа 6U по ГОСТ 28601.3-90, выполнен на печатной плате размерами 233,35 мм х 160 мм, и при эксплуатации требует размещения в каркасе со встроенной VME магистралью и устройством электропитания (в крейте). Модуль-носитель занимает 1 позицию на магистрали VME и имеет ширину лицевой панели 20 мм.
- 1.1.6 Модуль-носитель предназначен для работы в отапливаемых помещениях с условиями эксплуатации указанными в таблице 2.

Таблица 2 – Условия эксплуатации

Воздействующий фактор	Значения воздействующих факторов	Группа исполнения по ГОСТ 12997-84
1 Диапазон температуры окружающего воздуха, °C	От 5 до 65	B4
2 Верхнее значение относительной влажности, %	80 при 35°C и ниже без конденсации влаги	B4
3 Диапазон атмосферного давления, кПа	от 84 до 106,7	P1
4 Синусоидальная вибрация, Гц	10 – 55 при амплитуде смещения 0,35 мм	N2

- 1.1.7 Питание осуществляется от источников постоянного тока в крейте (5,0+0,25/-0,125) В (допустимое изменение напряжения соответствуют спецификации шины VME).
- 1.1.8 По степени защиты от проникновения воды, пыли и посторонних твердых частиц до установки в крейт модуль-носитель является незащищенным исполнение IP 00 по ГОСТ 14254-96.

1.2 Технические характеристики:

- максимальное количество устанавливаемых плат-мезонинов 8;
- тип модуля согласно спецификациям VME IEEE 1014 и IEC 821 подчиненный A16D16;
- адресное пространство, занимаемое модулем на шине VME 256 байт в диапазоне адресов от 0 до 16383 (0x0000 0x3FFF);
- возможность генерации прерываний по сигналам, поступающим от платмезонинов;
- поддержка источника прерывания ROAK с использованием одного из семи прерываний VME-шины, IRQ1, IRQ2, IRQ3, IRQ4, IRQ5, IRQ6, IRQ7;
 - питание от одного источника питания +5 В магистрали VME;
 - потребляемая мощность (без учета плат-мезонинов) не более 2,5 Вт.

1.3 Состав изделия

Состав модуля-носителя должен соответствовать таблице 3.

Таблица 3

Обозначение	Наименование		ество в икациях
модификации		-	-01
КУНИ.467239.002	Модуль-носитель VME 6U 98100	1	
КУНИ.467239.002-01	Модуль-носитель VME 6U 98100A		1
	Вилка D-Sub37 HARTING	2	2
	Кожух D-Sub37 HARTING	2	2
	Винт D-Sub HARTING	4	4
КУНИ.746614.007	Стойка	8	8
КУНИ.746614.006	Стойка	6	6
	Винт ВМ2,5	20	20
	Шайба С2,5	20	20
КУНИ.467239.002РЭ	467239.002РЭ Руководство по эксплуатации		1
КУНИ.467239.002ПС	Паспорт	1	
КУНИ.467239.002-01ПС	Паспорт		1

1.4 Устройство и работа

1.4.1 Конструкция

1.4.1.1 Модуль-носитель 98100/98100A конструктивно является модулем открытого типа 6U. Все элементы модуля-носителя расположены на одной печатной плате, имеющей 96-контактный разъем (X19) для подключения модуля-носителя к магистрали VME (приложение A). Фрагмент сборочного чертежа печатной платы модуля-носителя изображен на рисунке 1.

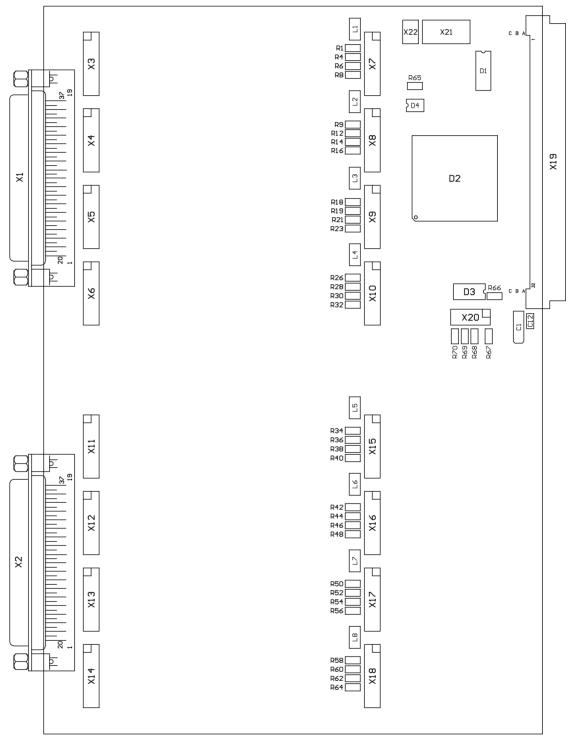


Рисунок 1 – Модуль-носитель 98100/ 98100A. Нумерация позиций плат-мезонинов – сверху вниз

Перемычки X21 предназначены для выбора базового адреса модуля-носителя, а перемычки X22 позволяет выбрать тип доступа к модулю – непривилегированный или супервизорный.

Микросхема конфигурационного EPROM (D3) устанавливается в панельку. Эта микросхема не входит в комплект поставки модуля-носителя и поставляется отдельно, так как ее прошивка зависит от состава используемых плат-мезонинов.

16-контактные разъемы (X3–X18) служат для установки плат-мезонинов. Для фиксации плат-мезонинов в комплект поставки модуля-носителя включены стойки с винтами и шайбами.

37-контактные разъемы на лицевой панели модуля-носителя (X1, X2) предназначены для подключения внешних сигналов.

1.4.2 Назначение контактов разъемов

1.4.2.1 Контакты разъемов X3–X6 и X11–X14 соединены с контактами разъемов X1, X2, что обеспечивает возможность непосредственного подключения необходимых сигналов к платам-мезонинам через разъемы лицевой панели. На каждый из разъемов X3–X6 и X11–X14 приходят 9 печатных проводников.

Соединения между разъемами X3–X6 и X1, а также между разъемами X11–X14 и X2 описаны в приведенных ниже таблицах. Таблица 4 позволяет определить номер контакта платы-мезонина по номеру контакта разъема лицевой панели, а таблица 5 – по номеру контакта платы-мезонина – номер контакта лицевого разъема.

Таблица 4 – Соединение контактов разъемов X1, X2 с контактами разъемов X3 – X6, X11 – X14

	Pa3	ьем Х1		Разъем Х2				
Конт.	Адрес	Конт.	Адрес	Конт.	Адрес	Конт.	Адрес	
1	не исп.	20	X6:16	1	не исп.	20	X14:16	
2	X6:15	21	X6:13,14	2	X14:15	21	X14:13,14	
3	X6:11,12	22	X6:9,10	3	X14:11,12	22	X14:9,10	
4	X6:7,8	23	X6:5,6	4	X14:7,8	23	X14:5,6	
5	X6:3,4	24	X6:1,2	5	X14:3,4	24	X14:1,2	
6	X5:16	25	X5:15	6	X13:16	25	X13:15	
7	X5:13,14	26	X5:11,12	7	X13:13,14	26	X13:11,12	
8	X5:9,10	27	X5:7,8	8	X13:9,10	27	X13:7,8	
9	X5:5,6	28	X5:3,4	9	X13:5,6	28	X13:3,4	
10	X5:1,1	29	X4:16	10	X13:1,1	29	X12:16	
11	X4:15	30	X4:13,14	11	X12:15	30	X12:13,14	
12	X4:11,12	31	X4:9,10	12	X12:11,12	31	X12:9,10	
13	X4:7,8	32	X4:5,6	13	X12:7,8	32	X12:5,6	
14	X4:3,4	33	X4:1,2	14	X12:3,4	33	X12:1,2	
15	X3:16	34	X3:15	15	X11:16	34	X11:15	
16	X11:13,14	35	X11:11,12	16	X11:13,14	35	X11:11,12	
17	X11:9,10	36	X11:7,8	17	X11:9,10	36	X11:7,8	
18	X11:5,6	37	X11:3,4	18	X11:5,6	37	X11:3,4	
19	X11:1,2			19	X11:1,2			

Таблица 5 – Соединение контактов разъемов X3 – X6, X11 – X14 с контактами разъемов X1, X2

Контакт	Х3	X4	X5	Х6	X11	X12	X13	X14				
KOHTAKI		Адрес										
1, 2	X1:19	X1:33	X1:10	X1:24	X2:29	X2:33	X2:20	X2:24				
3, 4	X1:37	X1:14	X1:28	X1:5	X2:37	X2:24	X2:28	X2:5				
5, 6	X1:18	X1:32	X1:9	X1:23	X2:28	X2:32	X2:9	X2:23				
7, 8	X1:36	X1:13	X1:27	X1:4	X2:36	X2:23	X2:27	X2:4				
9, 10	X1:17	X1:31	X1:8	X1:22	X2:27	X2:32	X2:8	X2:22				
11, 12	X1:35	X1:12	X1:26	X1:3	X2:35	X2:22	X2:26	X2:3				
13, 14	X1:16	X1:30	X1:7	X1:21	X2:26	X2:30	X2:7	X2:22				
15	X1:34	X1:11	X1:25	X1:2	X2:34	X2:22	X2:25	X2:2				
16	X1:15	X1:29	X1:6	X1:20	X2:25	X2:29	X2:6	X2:20				

Разъемы X7 – X10 и X15 – X18 обеспечивают возможность обмена логическими сигналами (PA[7..0], PB[7..0], ..., PH[7..0]) между модулем-носителем и платами-мезонинами, а также служат для подачи напряжения питания на платы-мезонины (таблица 6). Через каждый из разъемов возможна передача до 8 логических сигналов ТТЛ / КМОП. Направление передачи сигналов может быть любым.

Таблица 6 – Назначение контактов разъемов X7 – X10 и X15 – X18

Контакт	Адрес								
	X7	X8	Х9	X10	X15	X16	X17	X18	
1, 2				+!	5 B				
3, 4				Не испо	льзуются				
5	PA0	PB0	PC0	PD0	PE0	PF0	PG0	PH0	
6	PA1	PB1	PC1	PD1	PE1	PF1	PG1	PH1	
7	PA2	PB2	PC2	PD2	PE2	PF2	PG2	PH2	
8	PA3	PB3	PC3	PD3	PE3	PF3	PG3	PH3	
9	PA4	PB4	PC4	PD4	PE4	PF4	PG4	PH4	
10	PA5	PB5	PC5	PD5	PE5	PF5	PG5	PH5	
11	PA6	PB6	PC6	PD6	PE6	PF6	PG6	PH6	
12	PA7								
13, 14	Не используются								
15,16				Об	щий				

1.4.3 Базовый адрес и модификатор адреса

1.4.3.1 Базовый адрес модуля-носителя определяется установкой перемычек. Перемычками выбирается также тип доступа к модулю-носителю: непривилегированный (соответствует модификатору адреса «0x29») или супервизорный (соответствует модификатору адреса «0x2D»).

Базовый адрес Модификатор адреса 29 К 2 К 1 К 0 X22 X21

Рисунок 2 – Установка базового адреса и модификатора адреса при помощи перемычек на плате модуля-носителя

Каждая перемычка в соответствии с рисунком 2 может находиться в одном из двух положений — верхнем или нижнем. Положение перемычек определяет шестнадцатеричный базовый адрес:

$$BA = (K_5 \cdot 2^5 + K_4 \cdot 2^4 + K_3 \cdot 2^3 + K_2 \cdot 2^2 + K_1 \cdot 2 + K_0) \cdot 0x100$$
,

где K_5, \ldots, K_0 — коэффициенты, которые принимают значения «0» или «1» в зависимости от местоположения соответствующих перемычек. Верхнему положению перемычки соответствует «1», нижнему — «0». Для модификатора адреса нижнее положение перемычки разрешает модулю отвечать на соответствующие обращения, верхнее — запрещает. На рисунке 2 шестнадцатеричное значение базового адреса модуля-носителя равно 0x500; модулю-носителю разрешено отвечать как на непривилегированный, так и на супервизорный доступ.

1.4.4 Принцип действия модуля

1.4.4.1 Обмен данными между платами-мезонинами и шиной VME осуществляется посредством ПЛИС (D2).

Структура ПЛИС показана на рисунке 3. Внутренняя шина обеспечивает возможность чтения-записи 16-разрядных слов и байтов, «географическую» адресацию субмодулей, имеет и 4-разрядную шину адреса (в пределах каждого субмодуля можно адресовать 16 шестнадцатиразрядных регистров или 32 байта), а также поддерживает прерывания. Субмодули занимают половину адресного пространства модуля (128 байт); другая половина отведена для устройств модуля: контроллера прерываний, памяти с произвольным доступом (RAM) и интерфейса к перепрограммируемой памяти (EEPROM), см. далее.

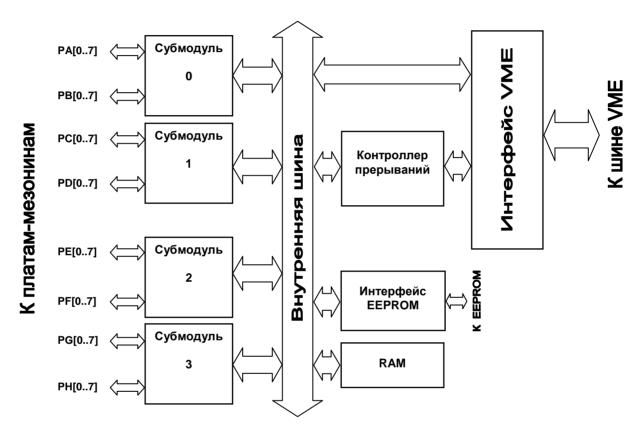


Рисунок 3 – Структурная схема ПЛИС модуля-носителя

Используемая архитектура позволяет легко сочетать различные платы-мезонины (приложение Б) и соответствующие интерфейсы к ним (приложение В, приложение Г). При этом накладываются следующие ограничения:

- а) платы-мезонины, занимающие по одной позиции, должны объединяться в пары, так как они обслуживаются одним субмодулем;
- б) платы-мезонины, занимающие четыре позиции, обслуживаются парой субмодулей.

Помимо субмодулей, к внутренней шине подключаются также интерфейс EEPROM и память с произвольным доступом (RAM).

1.4.5 Адресация субмодулей и вспомогательных устройств модуля-носителя

Адреса регистров субмодулей на шине VME определяется суммой трех слагаемых: базового адреса модуля-носителя, адреса субмодуля и адреса регистра субмодуля. Адрес субмодуля определяется его позицией в соответствии с таблицей 7.

Таблица 7

Субмодуль	Шестнадцатиразрядный адрес
0	0x0
1	0x20
2	0x40
3	0x60

Кроме субмодулей, непосредственно обслуживающих платы-мезонины, в модуле-носителе присутствуют вспомогательные устройства: электрически перепрограммируемое постоянное запоминающее устройство (EEPROM) емкостью 128 байт и память с произвольным доступом (RAM), а также контроллер прерываний.

RAM и EEPROM предоставляются в распоряжение пользователя. В частности, EEPROM, может служить для хранения информации об установленных платахмезонинах.

Адресное пространство модуля-носителя представлено в таблице 8.

Таблица 8 – Адресное пространство модуля-носителя

Шестнадцатеричный адрес	Доступ	Регистр
0x0 - 0x1F	*	Регистры субмодуля 0
0x20 - 0x3F	*	Регистры субмодуля 1
0x40 - 0x5F	*	Регистры субмодуля 2
0x60 - 0x7F	*	Регистры субмодуля 3
0x81	R/W, byte	Регистр данных EEPROM
0x83	R/W, byte	Регистр адреса EEPROM
0x85	R/W, byte	Регистр команд EEPROM
0x89	R/W, byte	Регистр управления контроллера прерываний
0x8b	R/W, byte	Регистр прерываний
0xE0 - 0xFF	R/W, word, byte	Память с произвольным доступом (RAM)
* – определяется субмоду	пем	

1.4.5.1 Регистры обмена данными с EEPROM (0x81, 0x83, 0x85)

Электрически стираемое постоянное запоминающее устройство (EEPROM) служит для хранения пользовательской информации.

Обмен данными с EEPROM осуществляется через три регистра — регистр данных, регистр адреса и регистр кода операции. Порядок обмена следующий: запись данных (для операций, требующих этого) по адресу 0x81, запись адресной информации по адресу 0x83 и запись кода операции по адресу 0x85.

Все операции обмена данными с регистрами управления EEPROM побайтовые.

Запись операции в регистр кода операции автоматически вызывает ее выполнение в EEPROM. Процесс выполнения операции может требовать некоторого

времени, поэтому необходимо предварительно проверить готовность EEPROM. Это можно сделать, читая старший бит регистра кода операции. Чтение «1» показывает, что идет выполнение операции; чтение «0» означает готовность к выполнению следующей операции.

Регистр данных Data

D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	Ω

Регистр адреса Addr

	A6	A5	A4	А3	A2	A1	A0
 7	6	5	4	3	2	1	0

Регистр кода операции *Cmd*

EEPROM busy						Operation code, bit 1	Operation code, bit 0
7	6	5	4	3	2	1	0

Коды возможных операций EEPROM приведены в таблице 9.

Таблица 9

		Регистры															
	Cmd Addr[60]					Data[70]											
Операция	1	0	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
, ,	do	Code	9V	Y2	A4	A3	A2	A1	A0	2 0	90	9 0	D4	D3	D2	D1	D0
Разрешение записи / стирания	0	0	1	1	Х	Х	Х	Х	Х								
Чтение	1	0	Ад	рес	;												
Запись	0	1	Ад	рес	,					Да	ННЬ	е					
Стирание	1	1	Ад	рес	;												
Стирание всех ячеек	0	0	1	0	Х	Х	Х	Х	Х								
Запись во все ячейки	0	0	0	1	Х	Х	Х	Х	Х	Да	ннь	е					
Запрещение записи / стирания	0	0	0	0	Х	Х	Х	Х	Х								
Примечание – Значение х любое																	

1.4.5.2 Контроллер прерываний

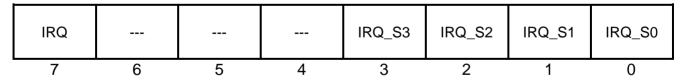
Контроллер прерываний модуля-носителя предназначен для обработки прерываний, генерируемых субмодулями.

Он имеет четыре входа сигналов запросов прерываний IN0 ... IN3 , поступающих от субмодулей 0 ... 3. Запрос по входу IN0 имеет высший приоритет, запрос по входу IN3 – низший.

В составе контроллера имеется регистр запросов прерываний и регистр управления, позволяющий выбрать уровень прерывания VME шины, разрешить или запретить прерывания от отдельных субмодулей или от модуля в целом.

В цикле подтверждения прерывания на шине VME формируется байт "STATUS ID" (вектор прерывания), позволяющий однозначно определить источник запроса прерывания, и соответствующий триггер запроса прерывания сбрасывается; таким образом реализуется механизм ROAK, установленный стандартом VME.

Регистр управления IRQ CTRL


Mask	L2	L1	LO	Mask 3	Mask 2	Mask 1	Mask 0
7	6	5	4	3	2	1	0

Mask 3 ... Mask 0 – запись «1» или «0» соответственно разрешает или запрещает формирование запроса прерывания по соответствующему входу IN3 ... IN0.

Mask — запись «1» или «0» соответственно разрешает или запрещает формирование запроса прерывания от модуля.

L2 ... L0 — код уровня прерывания VME-шины. Значения 1 ... 7 соответствуют формированию сигнала прерывания VME-шины IRQ1 ... IRQ7. При нулевом значении кода прерывания не генерируются.

Регистр запросов прерываний IRQ

IRQ_S3 ... IRQ_S0 — триггеры запросов прерываний, поступающих от субмодулей 3 ... 0.

IRQ – запрос прерывания от модуля; IRQ = 1, если прерывания от модуля разрешены, и присутствует хотя бы один немаскированный запрос прерывания от субмодулей.

Разряды $3 \dots 0$ (IRQ_S3 \dots IRQ_S0) регистра запросов прерывания доступны как для чтения, так и для записи, разряд 7 (IRQ) доступен только для чтения; по остальным разрядам всегда читается нуль.

1.4.5.3 Память с произвольным доступом

Память с произвольным доступом (RAM) предназначена для хранения временных данных пользователя, а также может использоваться в целях тестирования модуля-носителя. Ячейки памяти с произвольным доступом располагаются по адресам 0xE0 ... 0xFF. При обращении к памяти возможны следующие операции: чтение или запись слова (четные адреса), чтение или запись младшего байта (нечетные адреса), чтение или запись старшего байта (четные адреса).

ПРИЛОЖЕНИЕ А Сигналы VME-шины, используемые модулем

Таблица А 1

A1	D00	B1	-	C1	D08
A2	D01	B2	-	C2	D09
A3	D02	В3	-	C3	D10
A4	D03	B4	-	C4	D11
A5	D04	B5	-	C5	D12
A6	D05	B6	-	C6	D13
A7	D06	B7	-	C7	D14
A8	D07	B8	-	C8	D15
A9	GND	B9	-	C9	GND
A10	SYSCLK	B10	-	C10	-
A11	GND	B11	-	C11	-
A12	DS1	B12	-	C12	SYSRESET
A13	DS0	B13	-	C13	LWORD
A14	WRITE	B14	-	C14	AM5
A15	GND	B15	-	C15	-
A16	DTACK	B16	AM0	C16	-
A17	GND	B17	AM1	C17	-
A18	AS	B18	AM2	C18	-
A19	GND	B19	AM3	C19	-
A20	IACK	B20	GND	C20	-
A21	IACKIN	B21	-	C21	-
A22	IACKOUT	B22	-	C22	-
A23	AM4	B23	GND	C23	A15
A24	A07	B24	IRQ7	C24	A14
A25	A06	B25	IRQ6	C25	A13
A26	A05	B26	IRQ5	C26	A12
A27	A04	B27	IRQ4	C27	A11
A28	A03	B28	IRQ3	C28	A10
A29	A02	B29	IRQ2	C29	A09
A30	A01	B30	IRQ1	C30	A08
A31	-	B31	-	C31	-
A32	+5V	B32	+5V	C32	+5V

ПРИЛОЖЕНИЕ Б Перечень плат-мезонинов

Таблица В 1

Дискретный вывод					
Плата – мезонин дискретного вывода 98110	8 каналов дискретного вывода; выходы — эмиттеры NPN-транзисторов; коллекторы объединены; напряжение до 40 В; ток до 200 мА; остаточное напряжение < 2,5 В; групповая гальваническая изоляция. Занимает 1 позицию на модуле-носителе.	КУНИ.467236.023			
Плата – мезонин дискретного вывода 98112	8 каналов дискретного вывода; выходы — «открытый сток» (истоки объединены); напряжение до 50 В; ток до 50 мА; остаточное напряжение <0.4 В; групповая гальваническая изоляция. Занимает 1 позицию на модуле-носителе.	КУНИ.467236.025			
Плата – мезонин дискретного вывода 98114	4 канала дискретного вывода; выходы — коллекторы и эмиттеры транзисторов; напряжение до 50 В; ток до 500 мА; остаточное напряжение <2 В; тип гальванической изоляции — «канал-канал». Занимает 1 позицию на модуле-носителе.	КУНИ.467236.024			
Плата – мезонин дискретного вывода 98115	4 реле с нормально замкнутыми контактами; коммутируемый ток до 1 А; напряжение 125 В переменного тока или 30 В постоянного тока. Занимает 1 позицию на модуле-носителе.	КУНИ.467236.026			
	Дискретный ввод				
Плата – мезонин дискретного ввода 98116	8 каналов дискретного ввода. Входное напряжение 0+24 В; входной ток 5 мА; время включения / выключения не более 30 мкс; групповая гальваническая изоляция. Занимает 1 позицию на модуле-носителе.	КУНИ.467236.022			
Плата – мезонин дискретного ввода 98117	4 канала дискретного ввода TTL сигналов. Время включения / выключения 300 мкс; тип гальванической изоляции – «канал-канал». Занимает 1 позицию на модуле-носителе.	КУНИ.467236.027			
Плата – мезонин дискретного ввода 98118	8 каналов дискретного ввода TTL сигналов; групповая гальваническая изоляция. Занимает 1 позицию на модуле-носителе.	КУНИ.467236.028			
Плата – мезонин дискретного ввода 98119	4 канала дискретного ввода. Входное напряжение 0+24 В; тип гальванической изоляции – «канал-канал». Занимает 1 позицию на модуле-носителе.	КУНИ.467236.029			

Таблица В 2

	Аналоговый ввод					
Плата-мезонин аналого- цифрового преобразователя 98148	8 каналов измерения сигналов термометров сопротивления по 3-проводной схема включения. Диапазон температур от 0 до 100 °С. Основная погрешность измерения сопротивления не более 0.1%. Групповая гальваническая изоляция. Занимает 2 позиции на модуле-носителе.	КУНИ.468155.007				
Плата-мезонин аналого- цифрового преобразователя 98149	8 каналов измерения токовых сигналов (0-5 мА, 0-20 мА, 4-20 мА), сигналов напряжения (0-200 мВ, 0-2 В). Основная погрешность измерения не более 0,1 %. Групповая гальваническая изоляция. Занимает 2 позиции на модуле-носителе.	КУНИ.468155.008				
Плата-мезонин аналого- цифрового преобразователя 98177	16-разрядный аналого-цифровой преобразователь на основе АЦП АD677 с коммутатором на 16 дифференциальных или 32 одиночных канала; диапазон входных сигналов общий для всех каналов: ±1 В,±10 В (диапазон задается резисторами), гальваническая изоляция по выходу АЦП. Основная погрешность измерения 0.02 %. Занимает 4 позиции на модуле-носителе.	КУНИ.468155.009				
	Другие устройства					
Плата – мезонин преобразователя частота-код 98153	8 дискретных гальванически изолированных канала измерения частот сигналов в диапазоне от 0,1 Гц до 2 МГц. Время измерения частоты сигнала программируемое — от 10 мс до 10 с. Основная погрешность измерения не более 0.001%. Занимает 2 позиции на модуле-носителе.	КУНИ.468152.007				
Плата – мезонин источника питания 98120	Два независимых гальванически изолированных источника питания с номинальным напряжением 15 В, мощность в нагрузке до 1 Вт для каждого. Занимает 1 позицию на модуле-носителе.	КУНИ.436441.001				

ПРИЛОЖЕНИЕ В Субмодули

В.1 СПИСОК СУБМОДУЛЕЙ

Список субмодулей с указанием мезонинных плат, к которым данный субмодуль обеспечивает интерфейс, приведен в таблице В.1.

Таблица В.1

Обозначение субмодуля	Обозначения мезонинных плат	Краткое описание	Примечание
i16	98116 (DI8a); 98117 (DI4a); 98118 (DI8b); 98119 (DI4b)	Ввод 16-разрядного слова данных	Интерфейс к двум платам дискретного ввода одинарной ширины, установленным в соседние позиции.
o16	98110 (DO8a); 98112 (DO8b); 98114 (DO4a); 98115 (DR4a)	Вывод 16-разрядного слова данных	Интерфейс к двум платам дискретного вывода одинарной ширины, установленным в соседние позиции.
io16a	98110 (DO8a); 98112 (DO8b); 98114 (DO4a); 98115 (DR4a); 98116 (DI8a); 98117 (DI4a); 98118 (DI8b); 98119 (DI4b)	Ввод-вывод 16- разрядного слова данных, с побитным выбором направления передачи	Интерфейс к двум платам дискретного ввода или вывода одинарной ширины, установленным в соседние позиции.
a4d8	98153	Подключение к шине данных мезонинных плат с 4-разрядной шиной адреса и 8-разрядной двунаправленной шиной данных	Интерфейс к мезонинным платам двойной ширины с внутренними регистрами.
adc2548	98148; 98149	Интерфейс плат- мезонинов на основе микросхемы TLV2548	
adc677_1; adc677_2	98177	Интерфейс платы- мезонина на основе микросхемы AD677	Два субмодуля используются совместно, для обеспечения интерфейса к мезонинной плате, занимающей 4 позиции на модуле-носителе.

В.2 ОПИСАНИЯ СУБМОДУЛЕЙ

В настоящем разделе приведены описания некоторых (универсальных) субмодулей. Описания остальных субмодулей можно найти в руководствах по эксплуатации плат-мезонинов, к которым они относятся.

В.2.1 Субмодуль і16

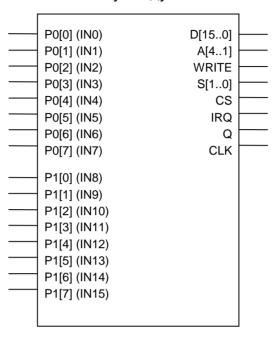


Рисунок В.1

Субмодуль имеет один шестнадцатиразрядный регистр, расположенный по адресу АО, доступный только для чтения. Назначения выводов и адресация регистров субмодуля представлены соответственно в таблицах В.2 и В.3. Возможны операции как со словами, так и с байтами, в зависимости от операции на шине VME. Нечетному адресу соответствует младший байт слова, четному адресу — старший.

Таблица В.2

Название вывода	Тип вывода	Назначение
P0[70]	вход	Входы регистра <i>rgIN</i> , разряды 70
P1[70]	вход	Входы регистра <i>rgIN</i> , разряды 158

Таблица В.3

Адрес	Регистр	Операция	Описание
0x0	Входной регистр rglN	R	Чтение 16-разрядного слова с двух разъемов мезонинных плат.

В.2.2 Субмодуль о16

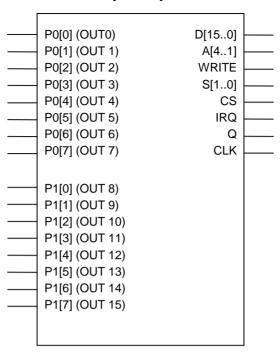


Рисунок В.2

Субмодуль имеет один шестнадцатиразрядный регистр, расположенный по адресу А0, доступный для записи и чтения. Сигналы с выходов этого регистра поступают на два разъема мезонинных плат. Назначения выводов и адресация регистров субмодуля представлены соответственно в таблицах В.4 и В.5. Для каждого регистра возможны операции как со словами, так и с байтами, в зависимости от операции на шине VME. Нечетному адресу соответствует младший байт слова, четному адресу – старший.

Таблица В.4

Название вывода	Тип вывода	Назначение
P0[70]	выход	Выходы регистра <i>rgOUT</i> , разряды 70
P1[70]	выход	Выходы регистра <i>rgOUT</i> , разряды 158

Таблица В.5

Адрес	Регистр	Операция	Описание
0x0	Выходной регистр rgOUT	RW	Запись или чтение 16-разрядного регистра, выходы которого подключены к двум разъемам мезонинных плат.

В.2.3 Субмодуль іо16

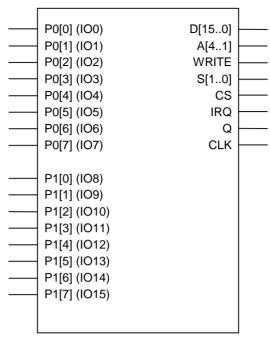


Рисунок В.3

Субмодуль имеет три шестнадцатиразрядных регистра, один доступный только для чтения, два других — для чтения и записи. Назначения выводов и адресация регистров субмодуля представлены соответственно в таблицах В.6 и В.7. Для каждого регистра возможны операции как со словами, так и с байтами, в зависимости от операции на шине VME. Нечетному адресу соответствует младший байт слова, четному адресу — старший.

Таблица В.6

Название вывода	Тип вывода	Назначение
P0[70]	Выход	Выходы регистра <i>rgOUT</i> или выходы регистра <i>rgIN</i> , разряды 7…0
P1[70]	Выход	Выходы регистра <i>rgOUT</i> или выходы регистра <i>rgIN</i> , разряды 15…8

Таблица В.7

Адрес	Регистр	Операция	Описание
0x0	Входной регистр rgIN	R	Чтение 16-разрядного слова с двух разъемов мезонинных плат
0x2	Выходной регистр rgOUT	RW	Запись или чтение регистра, выходы которого подключены к двум разъемам мезонинных плат. Если соответствующий бит регистра направления <i>rgDIR</i> равен <i>0</i> , сигнал с выхода регистра на разъем не поступает.
0x4	Регистр направления rgDIR	RW	Определяет направление сигнала для каждого разряда. Чтению соответствует <i>0</i> , записи – <i>1</i> .

В.2.4 Субмодуль А4D8

Субмодуль A4D8 предназначен для обеспечения интерфейса к платаммезонинам, обмен данными с которыми выполняется по двунаправленной 8-разрядной шине данных с адресацией внутренних регистров по 4-разрядной шине адреса.

На рисунке В.4 изображено условное графическое обозначение субмодуля A4D8. Неиспользуемые в субмодуле выводы имеют обозначение NC ("not connected").

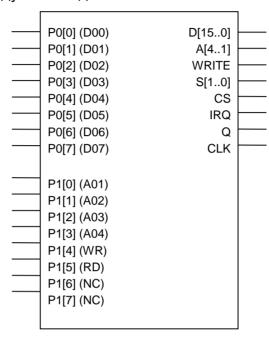


Рисунок В.4

Назначение выводов субмодуля А4D8 представлено в таблице В.8.

Таблица В.8

Название вывода	Тип вывода	Назначение
P0[70] (D07D00)	двунапр.	Линии данных
P1[30] (A04A01)	Выход	Линии адреса (транслируются со входа на выход)
P1[4] (WR)	Выход	Сигнал записи
P0[5] (RD)	Выход	Сигнал чтения
D[150]	двунапр.	Линии данных (линии D15D08 игнорируются и при чтении принимают значение лог. «0»)
A[41]	Вход	Линии адреса
WRITE	Вход	Сигнал записи: WRITE = VCC – запись, WRITE = GND – чтение
S[10]	Вход	Сигнал стробирования для циклов чтения и записи: S1 – младший байт, S0 – старший байт
CS	Вход	Сигнал выбора субмодуля
IRQ	Выход	Сигнал запроса прерывания субмодулем
Q	Выход	Сигнал подтверждения внутренней адресации субмодуля
CLK	Вход	Сигнал тактирования субмодуля (16МГц)

ПРИЛОЖЕНИЕ Г Конфигурационные EPROM

Таблица Г.1

Код EPROM	Состав субмодулей		
Дискретный ввод-вывод			
0101	io16, io16, io16, i16		
0102	io16, io16, io16, o16		
0103	i16, i16, i16		
0104	i16, i16, i16, o16		
0105	i16, i16, o16, o16		
0106	i16, o16, o16, o16		
0107	016, 016, 016		
Платы 98177 и дискретный ввод-вывод			
0120	adc677_1, adc677_2, adc677_1, adc677_2		
0121	adc677_1, adc677_2, o16, o16		
0122	adc677_1, adc677_2, i16, o16		
0123	adc677_1, adc677_2, i16, i16		
Платы 98148, 98149 и дискретный ввод-вывод			
0140	adc2548, adc2548, adc2548		
0141	adc2548, adc2548, adc2548, o16		
0142	adc2548, adc2548, i16		
0143	adc2548, adc2548, i16, i16		
0144	adc2548, adc2548, i16, o16		
0145	adc2548, adc2548, o16, o16		
Платы 98153 и дискретный ввод-вывод			
0160	a4d8, a4d8, a4d8		
0161	a4d8, a4d8, i16, i16		
0162	a4d8, a4d8, i16, o16		
0163	a4d8, a4d8, o16, o16		

Примечание – Конфигурации, не указанные в таблице, могут быть выполнены по заказу.